Expression of tissue inhibitor of matrix metalloproteinases 1 by use of an adenoviral vector inhibits smooth muscle cell migration and reduces neointimal hyperplasia in the rat model of vascular balloon injury.
نویسندگان
چکیده
BACKGROUND Cell migration is a major contributor to injury-induced neointimal hyperplasia and depends on alteration of the proteolytic balance within the arterial wall toward matrix breakdown. This is partly mediated by the matrix metalloproteinases (MMPs) and their natural inhibitors, the tissue inhibitors of metalloproteinases (TIMPs). METHODS AND RESULTS An increase in expression of biologically active and immunoreactive TIMP-1 was seen in vitro after infection of rat smooth muscle cells (SMCs) with Av1.TIMP1 (an adenoviral vector containing the human TIMP1 cDNA). Infection of rat SMCs with Av1.TIMP1 reduced migration in vitro by 27% compared with control virus-infected cells (37.6+/-4.34 versus 51+/-5.01 cells per high-power field, P<0.05). The adenoviral vector was delivered to the injured rat carotid artery, and 4 days later, immunoreactive protein was identified and migration of SMCs reduced by 60% (5.2+/-0. 5 versus 12.8+/-1.5 cells per section, P<0.05, n=5). Neointimal area 14 days after injury showed a 30% reduction in the animals receiving the Av1.TIMP1 virus compared with controls (0.09+/-0.01 versus 0. 14+/-0.01 mm2, P=0.02, n=14). CONCLUSIONS The response to arterial balloon injury involves MMP-dependent SMC migration and can be attenuated in vivo by the transmural expression of TIMP-1 by adenoviral gene transfer.
منابع مشابه
Gliotoxin inhibits neointimal hyperplasia after vascular injury in rats.
Neointima formation participates in the pathophysiology of atherosclerosis and restenosis. Proliferation and migration of vascular smooth muscle cells (VSMC) are initial responses to vascular injury. The aim of the present study was to assess the effect of gliotoxin, an inhibitor of nuclear factor (NF)-kappaB, on migration and proliferation of cultured rat VSMC and neointimal formation in injur...
متن کاملCCN1 knockdown suppresses neointimal hyperplasia in a rat artery balloon injury model.
OBJECTIVE CCN1 (Cyr61) is an extracellular matrix-associated protein involved in cell proliferation and survival. CCN1 is bound to vascular smooth muscle cells (VSMCs) via integrins and is expressed in VSMCs in atherosclerotic lesions, suggesting involvement in the regulation of vascular smooth muscle cell (VSMC) proliferation and atherosclerosis. We hypothesized that knockdown of CCN1 may inhi...
متن کاملSmooth muscle cell migration and matrix metalloproteinase expression after arterial injury in the rat.
We have characterized matrix metalloproteinase expression in the rat carotid artery after two forms of arterial injury, balloon catheter denudation and nylon filament denudation. Gelatinolytic enzymes with molecular masses of 70 and 62 kD were produced constitutively in the rat carotid. Production of an 88-kD gelatinase was induced after balloon catheter injury, and proteinase production contin...
متن کاملAn essential role for stromal interaction molecule 1 in neointima formation following arterial injury.
AIMS There is evidence to suggest that stromal interaction molecule 1 (STIM1) functions as a Ca2+ sensor on the endoplasmic reticulum, leading to transduction of signals to the plasma membrane and opening of store-operated Ca2+ channels (SOC). SOC have been detected in vascular smooth muscle cells (VSMCs) and are thought to have an essential role in the regulation of contraction and cell prolif...
متن کاملAliskiren Inhibits Neointimal Matrix Metalloproteinases in Experimental Atherosclerosis.
BACKGROUND The renin-angiotensin system (RAS) plays an important role in atherosclerosis. Acting via the angiotensin II receptor, type 1, oxidative stress increases and contributes to endothelial dysfunction and vascular inflammation. Renin exerts effects through a renin receptor causing an increase in the efficiency of angiotensinogen cleavage and facilitates angiotensin II (Ang II) generation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation
دوره 99 24 شماره
صفحات -
تاریخ انتشار 1999